
Bit fields and inline functions
Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2024

Stefan Huber: Bit fields and inline functions 1 of 8

www.sthu.org

Bit fields

Stefan Huber: Bit fields and inline functions Bit fields 2 of 8

Bit fields in C

Programming networking protocols or close to hardware often requires us to interpret data bit-wise
rather than byte-wise.
▶ For instance, the IPv4 header starts with 4 bits for the version, 4 bits of the header length, 6 bits

ToS, and so on. Another example is the SREG register of the ATmega32.
▶ The C and C++ programming languages defines so-called bit fields to model such data layouts as

a sequence of bits. [cppref-c-bitfields]
▶ Syntactically, a bit field is a struct1 member of integer type plus a declaration of how many bits are

spent.

1 typedef struct {
2 unsigned int version : 4;
3 unsigned int ihl : 4;
4 unsigned int tos : 6;
5 /* and more */
6 } ipv4_header ;

1 Actually, also union members can be defined as bit fields.

Stefan Huber: Bit fields and inline functions Bit fields 2 of 8

Bit fields in C

▶ Adjacent bit fields are usually packaged together, but it is implementation-defined.
▶ If field size is larger than type then value is limited to type’s size or a compiler error is raised.

1 typedef struct {
2 unsigned int a : 4;
3 unsigned int : 1; /* Nameless field for padding . */
4 unsigned int b : 2;
5 unsigned int : 0; /* Padding to next allocation unit boundary . */
6 } mybitfield ;

Technical details:
▶ A signed field means two’s complement. A signed field of size 1 can only have values 0 and -1.
▶ The standard defines int, signed int, unsigned int, _Bool as base types, but implementations may

support additional types, such as char, short, long and its signed and unsigned counterparts.
▶ It is implementation-defined whether int is signed or unsigned. For bit fields int has different

meaning than signed int!

Stefan Huber: Bit fields and inline functions Bit fields 3 of 8

Bit fields in C

▶ Adjacent bit fields are usually packaged together, but it is implementation-defined.
▶ If field size is larger than type then value is limited to type’s size or a compiler error is raised.

1 typedef struct {
2 unsigned int a : 4;
3 unsigned int : 1; /* Nameless field for padding . */
4 unsigned int b : 2;
5 unsigned int : 0; /* Padding to next allocation unit boundary . */
6 } mybitfield ;

Technical details:
▶ A signed field means two’s complement. A signed field of size 1 can only have values 0 and -1.
▶ The standard defines int, signed int, unsigned int, _Bool as base types, but implementations may

support additional types, such as char, short, long and its signed and unsigned counterparts.
▶ It is implementation-defined whether int is signed or unsigned. For bit fields int has different

meaning than signed int!

Stefan Huber: Bit fields and inline functions Bit fields 3 of 8

Translation units and linking

Stefan Huber: Bit fields and inline functions Translation units and linking 4 of 8

Translation units and linking

▶ A translation unit is (typically) a .c file that is compiled to an object file.
▶ The object files are then linked to a final binary (executable, library, ATmega32 program, . . .)

modul1.h modul1.c cc modul1.o

modul2.h modul2.c cc modul2.o

moduln.h moduln.c cc moduln.o
header source compiler object file

linker prog.exe

#include

Stefan Huber: Bit fields and inline functions Translation units and linking 4 of 8

Functions and symbols
▶ A function definition exports a symbol.

▶ If other translation units call this function then the linker looks for this symbol.
▶ The function declaration in the header file determines the symbol name.
▶ No two translation units can export the same symbol!

modul1.h modul1.c cc modul1.o

modul2.h modul2.c cc modul2.o

moduln.h moduln.c cc moduln.o

linker prog.exe

Example: Implement a function f()

▶ Say, modul2.h declares it and modul2.c defines it.
▶ Only modul2.o has the symbol for f().
▶ But we could call it in modul1.c, by including module2.h and therefore knowing its symbol name.

Stefan Huber: Bit fields and inline functions Translation units and linking 5 of 8

Inline functions

Stefan Huber: Bit fields and inline functions Inline functions 6 of 8

Inline functions

With C99 we can give the compiler a hint to inline a function [cppref-c-inline]:
▶ When calling a function, instead placing a function call the function’s body is placed.
▶ Inline functions are like macros, but with types.
▶ For small functions this is an optimization technique to save the function call costs. However, it is

only a hint to the compiler, we cannot force it.

Dilemma
▶ Where to define the inline function?
▶ Definition (now only declaration) must be known for all translation units for inlining.

→ Definition in header file.
▶ But only one translation unit must export a symbol.

Answer: Declare the inline function with extern keyword in one translation unit (.c file).

Stefan Huber: Bit fields and inline functions Inline functions 6 of 8

Complete inline function demo
The header file geom.h:

1 # ifndef geom_h_Epai3ohkaevei0ea
2 # define geom_h_Epai3ohkaevei0ea
3

4 # include <math.h>
5

6 inline double sq(double x) {
7 return x * x;
8 }
9

10 inline double norm(double x, double y) {
11 return sqrt(sq(x) + sq(y));
12 }
13

14 # endif

The implementation file geom.c:
1 # include "geom.h"
2

3 extern inline double sq(double x);
4 extern inline double norm(double x, double y);

Stefan Huber: Bit fields and inline functions Inline functions 7 of 8

Static and inline functions

▶ If you declare a function as static then it is only local to this translation unit.
▶ No symbol is exported. The namespace is not polluted.
▶ The function cannot be called from another translation unit.

▶ The definition of an inline function does not automatically export a symbol.
▶ So inline is a bit like static, but in header files.
▶ However, an external definition must exist. Hence, we have to explicitly add an export definition of

the function in one translation unit using the extern keyword.

Stefan Huber: Bit fields and inline functions Inline functions 8 of 8

References I

[cppref-c-bitfields] cppreference.com: bit fields. url:
https://en.cppreference.com/w/c/language/bit_field.

[cppref-c-inline] cppreference.com: inline function specifier. url:
https://en.cppreference.com/w/c/language/inline.

https://en.cppreference.com/w/c/language/bit_field
https://en.cppreference.com/w/c/language/inline

	Bit fields
	Translation units and linking
	Inline functions

