Digital 1/0O, instructions and programs, hardware abstraction

Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2024

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

www.sthu.org

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

«O» «Fr «

DAy
Digital 1/0

2 of 25

Digital 1/0 is a basic feature of a microcontroller:

» The ATmega32 has ports A-D with 8 pins
each.

» They can be used to read or write logical 1 or
0 on each individually.

Ports often have alternate functions. For the
ATmega32:

Port A: A/D converter

Port B: SPI, etc.

Port C: JTAG, two-wire serial, etc.
Port D: USART, ext. interrupts, etc.

v

vyy

The Raspberry Pi has up to 6 alternative functions
for a pin.

PAO - PA7
L

PGO
4 L

-PCGT7

PORTA DRIVERS/BUFFERS

| PORTC DRIVERS/BUFFERS |

i

I

| PORTA DIGITAL INTERFACE

| PORTC DIGITAL INTERFAGE |

I

y i

) i

|

I \

I v

| PORTB DIGITAL INTERFACE

| PORTD DIGITAL INTERFACE |

i

l

| PORTB DRIVERS/BUFFERS

| PORTD DRIVERS/BUFFERS |

r
PBO - PB7

E
PDO

-PD7

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

Digital I/O 2 of 25

Digital 1/0 basics

Digital 1/0O of each of port x is controlled by three registers!:
DDRx Data Direction Register: A bit 1 means output, a 0 means input.
PORTx Port Register: A bit 1 sets output voltage to logical 1, and otherwise 0 (if pin is
configured as output).?

PINx Port Input Register: A bit 1 means that the pin's voltage reads as logical 1, and
otherwise 0.

Port A
76543210

8656884
DDRA: 10000011 0x83: pin 0, 1 and 7 are output, all others input
PORTA: 10000001 0x81: pin 0 and 7 drives high, pin 1 drives low
PINA: 10110001 Oxbl: sense high at pin 0, 4, 5, and 7, all others low

1 See [ATmega32, p. 49].

And PORTXx used to configure pull-up resistors for input pins, see later.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital I/O

Digital 1/0 demo

Using bit operations, we read, write and flip bits in control registers.

#include <stdbool.h>
#include <avr/io.h>

int main() {
/% On port B, set pins 0..1 to output and pins 2..7 to input. */
DDRB = 0x03;

/% Change the output pins 0..1 to high on port B. */
PORTB |= 0x03;

/* Change the output pin O to low om port B. */

PORTB &= ~0x01;

/* Flip pin 1 on port B (high to low, low to high). */
PORTB "= 0x02;

/% Read level of pin 5 on port B. */
bool pinb5 = PINB & (1 << 5);

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital I/O

Protection diodes to Vcc and Gnd.

Configurable pull-up resistor of 20 k2 to 50 kQ2:

» Without pull-up resistor an input pin is floating
if level is not driven.

\
\
- -
Hence, pin is prone to noise, e.g., when using |
mechanical switches. } 8
» With a pull-up resistor the potential is pulled | P
to Vcc. = i Logic
Hence, if pin is not driven (e.g. not connected) C l |
then we read a logical one. pin } ,_Gene;fenrii?:l'ﬁé?fm
But if pin is driven to ground potential then we I ‘ DetganS

have power consumption at the pull-up =
resistor: The pull-up resistor acts as a load to
the driving potential of the pin.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital I/O 5 of 25

Configuring pull-up resistors

For input pins the PORTx register configures the pull-up resistor:

» A bit 0 means without pull-up resistor, a bit 1 means with pull-up resistor.

Port A
76543210

686854884

DDRA: 10000011 0x83: pin 0, 1 and 7 are output, all others input
PORTA: 00110000 0x30: pin 4 and 5 with pull-up, pins 2, 3, and 6 without

#include <avr/io.h>

int main() {
/* On port B, set all pins to input. */
DDRB = 0x00;
/* Activate pull-up resistor for pins 0..3 (and deactivate for 4..7). */
PORTB = 0xO0f;

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital I/O

Read-modify-write

Assume we want to change Pin 3 of Port B to output.
» In assembler there are instructions sBI, CBI to set or clear a bit atomically in one cycle.

» In C we use a read-modify-write access.
> This is not atomic! In fact, DDRB may have been altered between read and write, e.g., by an interrupt.

/* Change bit 3 of DDRB to 1. Does not happen in omne cycle. */
DDRB = DDRB | (1 << 3);
/% In a shorter notation. */

DDRB |= (1 << 3);
/* There is a preprocessor definition for Port-B-Pin-3. */
DDRB |= (1 << PB3);

Code style

Prefer makro PB3 over 3, because PB3 tells you mean a pin, not just a number.

Digital I/O 7 of 25

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

Datatypes in C

Standard arithmetic data types® for (signed) integers in C and their minimum size are

Type char short int long long long
Min. size (bytes) 1 2 2 4 8

The actual size of the above data type is not defined by the C programming language. However, there
are common data models:

Model char short int long longlong void*

IP16 1 2 2 4 8 2 avr-gcc*, MS-DOS

ILP32 1 2 4 4 8 4 typical 32-bit OS

LLP64 1 2 4 4 8 8 64-bit Windows

LP64 1 2 4 8 8 8 typical 64-bit UNIX-like OS

3

Since C99 there is a datatype for boolean values, too.

See [AVR-GCC-wiki] for details.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital I/O

New data types in C99

The C99 standard adds inttypes.h as header file with platform independent integer data types:

Size in bytes signed unsigned
1 int8_t uint8_t

2 int16_t uintl6_t
4 int32_t uint32_t
8 int64_t wuint64_t

The C99 standard also adds a header file stdbool.h with a genuine boolean datatype bool.

/% A boolean is either false (0) or true (1). Tertium non datur! */

bool x = 2;
assert(x == true);
assert(x == 1);
assert(x != 2);

Code style

It is good practice to be explicit on the language standard, e.g., compiling with gcc -std=c99 -pedantic.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital I/O 9 of 25

Bit handling in C

void bitdemo () {
uint8_t x, y;

»
n

Oxab;

1 << 6;

<
[}

y = x & (1 << 6);

x |= (1 << 3);

x &= “(1 << 2);

My;

<
[}

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital 1/0 10 of 25

Bit handling in C

void bitdemo () {
uint8_t x, y;

/* © 4s binary 1010 0101. (A common test pattern.) */

x = Oxab;
/* y 4is 0000 0001 shifted left by 6, which is 0100 0000. */
y = 1 << 6;

/% y is true if bit 6 of z is set. That ts, if bit-6 of z is set then y is
* (1 << 6), otherwise 0. */
y = x & (1 << 6);

/* Set bit 3 of . That <s, bitwise or of = with 0000 1000. */

x |= (1 << 3);

/% Clear bit 2 of . That is, bitwise and of = with 1111 1011. */
x &= (1 << 2);

/* Double logicial negation: Turns *any* true into 1 and leaves false as 0. */
y = !ly;

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital 1/0 11 of 25

Bit handling with C macros

/%% Returns a word with only bit-th bit set. Mind the parentheses! */
#define BIT(bit) (1ull << (bit))

/** Raise bit-th bit in word. */

#define BIT_SET(word, bit) ((word) |= BIT(bit))

/** Clear bit-th bit in word. */

#define BIT_CLR(word, bit) ((word) &= ~“BIT(bit))

/** Returns BIT(bit) 4f bit-th bit of word %is set and 0 otherwise. */
#define MASK_BIT (word, bit) ((word) & BIT(bit))

/** Returns 1 if bit-th bit of word is set and O otherwise. */
#define BIT_IS_SET (word, bit) (!!MASK_BIT(word, bit))

void bitdemo() {
uint8_t x=0xab, y;
/* y is 0100 0000. */
y = BIT(6);
/* y is true if bit 6 of z 4is set. */
y = MASK_BIT(x, 6);
/* Set bit 3 of z. */
BIT_SET(x, 3);
/* Clear bit 2 of =z. */
BIT_CLR(x, 2);

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Digital 1/0 12 of 25

Instructions and programs

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

«O0>» «Fr «E»

a

DA™
Instructions and programs 13 of 25

Instruction Set

The AVR CPU knows 131 instructions in five groups:

» Arithmetic and logical » Data transfer
» MCU control

» Branch > Bit and bit-test
Mnemonics ‘ Operands Description Operation ‘ Flags ‘ #Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD Rd, Rr Add two Registers Rd « Rd +Rr ZCNVH 1
ADC Rd, Rr Add with Carry two Registers Rd«Rd+Rr+C ZCNVH 1
ADIW RdlL,K Add Immediate to Word Rdh:Rdl « Rdh:Rdl + K ZCNV,S 2
SuB Rd, Rr Subtract two Registers Rd « Rd - Rr ZCNVH 1
SuBI Rd, K Subtract Constant from Register Rd < Rd-K ZCNVH 1
SBC Rd, Rr Subtract with Carry two Registers Rd«Rd-Rr-C Z,CNV,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd«Rd-K-C ZCNVH 1

Figure: See [ATmega32, p. 329].

There are two architectural styles for the instruction set: RISC and CISC

Stefan Huber: 02: al 1/0, instructions and programs, hardware abstraction Instructions and programs 13 of 25

Instruction Set Architectures: CISC versus RISC

History in instruction set design:

» Hardware design was mature, but compilers were immature.

» Hence, make assembler programming easier by having powerful, complex instructions.
» Control units used to be hard-wired, and got more and more complex.
>

At some point it was realized that control unit became a little “CPU" by itself: complex
instructions formed by micro instructions executed by the control unit.

v

For Intel processors, since Pentium Pro (1995), we can even update the microcode and so “patch

the processor”.®

» CISC: Complex Instruction Set Computer
The history described above

> RISC: Reduced Instruction Set Computer
The counter movement towards simpler, cleaner instructions

5

The micro operations of the Intel microcode are themselves of RISC style.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Instructions and programs 14 of 25

CISC

> Instructions often take many cycles.
» Different instructions are encoded by codes of different lengths.

» Typically a register-memory architecture:

> ALU operations can operate on memory directly
» Complex memory addressing modes, e.g., array access on instruction level

% uname -om
x86_64 GNU/Linux
% objdump --disassemble /bin/ls

16c8c: c3 retq
16c84d: 0of 1f 00 nopl (%rax)
16c90: c3 retq
16c91: 66 2e¢ Of 1f 84 00 00 nopw %cs:0x0 (%rax,%rax,1)
% objdump --disassemble /usr/1ib32/libm.so.6 # An z86 binary rather than =86

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Instructions and programs 15 of 25

RISC

» Counter-movement to simple and hard-wired instructions.
> Focus: Typically a program uses only few instructions most of the time (80/20 rule).
»> Complex instructions are substituted by a couple of simple ones.

» Each instruction takes one or a few cycles only and is encoded by a fixed size.

> Typically a load/store architecture:

> ALU operations operate on registers only rather than directly in memory.
» Hence, RISC computers often have many registers.

% uname -om
armv7l GNU/Linux
% objdump --disassemble /bin/1ls

24ee8: el2fffile bx 1r

24eec: eb59f300c ldr r3, [pc, #12]
24ef0: e3a01000 mov rl, #0

24ef4d: e08£3003 add r3, pc, r3
24ef8: 5932000 ldr r2, [r3]

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Instructions and programs 16 of 25

Delay

A common machine instruction to all processors is nopP:
» No operation. Do nothing for a single cycle.
» Why does a nop take a single cycle? Recall the CPU timing slide of last lecture.

#include <inttypes.h>
#include <avr/io.h>
#include <avr/cpufunc.h>

uint8_t readback (uint8_t x) {
PORTB = x;
/% We need to wait one cycle until we can read back PINB. See fig. 25 of
* ATmega32 data sheet. */
_NOP O);
return PINB;

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Instructions and programs 17 of 25

Delay

Waiting for a specific time requires a specific number of NOPs. A helper function hides that from us.

#define F_CPU 8000000
#include <util/delay.h>

void toggle_portb_forever () {
while (1) {
PORTB = ~“PORTB;
/* There is also a _delay_us (). */
_delay_ms (1000) ;

}

» It needs to know the CPU clock rate in Hz via the preprocessor definition F_cpu.
» |t assumes that compiler optimizations are not turned off.

Code style

Do not #define F_CPU in the source code, but pass it as compiler flag, e.g., avr-gcc -DF_CPU=8000000.
Hence, set this option in your Makefile or in your project configuration.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Instructions and programs 18 of 25

Modify-compile-run on a general-purpose OS:

» The compiler outputs a binary that can be executed by the OS.

For a microcontroller:

» The development machine typically has a different architecture. It runs a cross-compiler to produce
output for a target architecture.
» Programming hardware — like the Atmel JTAGICE3 — takes a hex file, connects to the

microcontroller, writes the program into the Flash memory, and then the microcontroller resets to
execute the new program.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

Instructions and programs 19 of 25

Life cycle of a program

Microcontroller programs typically do not terminate.
» Each program typically has two phases:
> First some initialization phase
» Then a loop of cyclic work
> Unexpected stops are prohibitive in most control tasks.

> Unexpected C++ exceptions, out of memory situations, floating-point exceptions, invalid memory
access, et cetera must not happen or must be dealt with gracefully!

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Instructions and programs 20 of 25

Hardware Abstraction

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

«O0>» «Fr «E»

a

DA™
Hardware Abstraction

21 of 25

Hardware Abstraction Layer

In a clean software architecture it is easy to make changes.®
» In embedded systems, hardware is diverse, and therefore might change.
» Things that change: pin numbering schemes, offset addresses, timing details, ...

» Changing hardware should be easy in the software architecture of embedded systems.
> Hence, we add abstraction of hardware, by a hardware abstraction layer (HAL).
> Gives a three-layered architecture pattern

. Uses abstractions, independent from concrete hardware,
Application .
e.g., draws a line

Provides device abstractions, hides details of hardware,
IIE e.g., provides a graphics API

The concrete hardware, which might be replaced,
Hardware . . .
e.g., implements display driver

6 Compare with the Liskov substitution principle in OOP, which is the L in SOLID.
Hardware Abstraction 21 of 25

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction

HAL: LED example

Example LED:
» An abstract LED can be turned on, turned off, toggled and one can read the state.
» Hardware details are hidden: Setting port pin to output mode, maintaining or reading state when
toggeling, et cetra.
Concrete drivers in hardware layer:
» A physical LED connected to a port of the ATmega32
» A LED bar connected via a communication interface

However, the HAL presents an abstract LED to the application. The application does not depend on
the concrete driver.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Hardware Abstraction 22 of 25

HAL: Wiring Pi Abstraction of pin numbering

The Raspberry Pi provides so-called GPIO pins which can be used for digital /O and much more.
» The command pinout on Raspbian gives us a visual representation:

00000000000000000 38
1000000000000000000!

Pi Model 3B V1.2

GPIO14
0) GPIO15
GPI018

6) GPI023
) GPI024

GP1025

24) GPIO8
: 1024Mb (25) GPI07
: MicrosD) (28) GPIO1
i 4

1 GPI012

: True)

: True 6) GPIO016
Camera ports (CSI) : 1) GPIO20
Display ports (DSI): 1 0) GPI021

Stefan Huber: il Hardware Abstraction 23 of 25

HAL: Wiring Pi Abstraction of pin numbering

Wiring Pi comes with a tool gpio for debugging.
» It shows the pin numbering and levels, can modify pins, output PWM signals, et cetera.

$ gpio blink 23 # Let GPIO 13 (wiring pi pin 23) blink

$ gpio readall
[...]
6	22	GPIOD.22	IN	1] 31		32	0	IN	GPID.26	26	12	
13	23	GPIO.23	0OUT	O	33		34			Ov		
19	24	GPIOD.24	IN	0	35		36	O	IN	GPIOD.27	27	16
26	25	GPIO.25	IN	0	37	l 38	0	IN	GPIO.28	28	20	
		ov			39		40	0	IN	GPIO.29	29	21
+--——= +--——= e it tomm - B it et P B R fmm——— +												
BCM	wPi	Name	Mode	V	Physical	V	Mode	Name	wPi	BCM		
e +o———= Fommmm tom—— 4+-——+---Pi 3B-—+--—4-——-—— fmmm - tom——— o +

7

Wiring Pi hides these details by defining its own number scheme that hides changes in hardware.

» The Wiring Pi number scheme leaves physical positions untouched, where as the BCM numbering
scheme may change.

7 Wiring Pi Pins. U1l http://wiringpi.con

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction Hardware Abstraction 24 of 25

http://wiringpi.com/pins/

memory storage networking
sockets access

system processing
... interfaces core v processes . memory access
s BER A

user o
space o \ = - .
interfaces ..« / QAM - z ot :Jn \

sy cats
F e

functionalities i
layers human interface

Hl char devices
fi

virtual

network controllers

disk controllers

) user peripherals memory
electronics o o c

Hardware Abstracti

Stefan Huber:

https://www.makelinux.net/kernel_map/

References |

[ATmega32] ATmega32: 8-bit AVR Microcontroller with 32KBytes In-System Programmable
Flash. Atmel Corporation. Feb. 2011.

[AVR-GCC-wiki] AVR GCC. URL: https://gcc.gnu.org/wiki/avr-gcc.

[I1SO18037] Programming languages — C — extensions to support embedded processors. Standard
ISO/IEC TR 18037:2008. International Organization for Standardization, June 2008.
URL: https://www.iso.org/standard/51126.html.

[Wiringpi] Wiring Pi Reference. URL: http://wiringpi.com/reference/.

[wiringpi-pins] Wiring Pi Pins. URL: http://wiringpi.com/pins/.

https://gcc.gnu.org/wiki/avr-gcc
https://www.iso.org/standard/51126.html
http://wiringpi.com/reference/
http://wiringpi.com/pins/

Programming languages

Choice of the programming language:

> Limited amount of memory, special-purpose peripherals, programming close to hardware and direct
access to registers or memory.

» Dynamic memory allocation is often prohibitive, in particular for real-time systems.
> Still, there are projects like MicroPython for microcontrollers.
Assembly:
> Rarely used for development anymore, but still for debugging.
» Direct control over the sequence of machine instructions and timing.

» When compiler is not available or to emit certain machine instructions.

» The typical choice for hardware-related and embedded software development.

» Some microcontrollers require non-standard dialects of C. Many manufacturers ship their own IDE
and/or own compiler.

> There is an embedded C standard [ISO18037], which adds, e.g., fixed-point arithmetic.

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction 26 of 25

Blink demo with Wiring Pi

#include <stdlib.h>
#include <unistd.h>
#include <wiringPi.h>

int main() {
/* WiringPi requires some setup. */
wiringPiSetup ();
/% Make Wiring Pi pin 23 (GPIO 13 on model 3B) an output pin. */
pinMode (23, OUTPUT);

digitalWrite (23, HIGH);
usleep (200000) ;
digitalWrite (23, LOW);
return EXIT_SUCCESS;

Documentation:

» Wiring Pi Reference. URL: http://wiringpi.com/reference/

Stefan Huber: 02: Digital 1/0, instructions and programs, hardware abstraction 27 of 25

http://wiringpi.com/reference/

	Digital I/O
	Instructions and programs
	Hardware Abstraction
	Appendix

