
Implementing Geometric Algorithms
for Real-World Applications

With and Without EGC-Support

Stefan Huber1 Martin Held2

1Institute of Science and Technology Austria

2FB Computerwissenschaften
Universität Salzburg, Austria

GCC 2013, Rio de Janeiro, Brazil
June 17–20

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications 1 of 29



Outline

1. Three industrial codes and their design principles:

FIST VRONI STALGO

2. Adding CORE and MPFR backend.

3. Open problems and future directions.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications 2 of 29



FIST

I Triangulates polygons with holes in 2D and 3D,
I based on ear-clipping and
I multi-level geometric hashing to speed up computation [Held, 2001a].

I Handles
I degenerate input,

I self-overlapping input,
I self-intersecting input.

I No Delaunay triangulation, but heuristics to generate “decent” triangles.

I Typical applications in industry: triangulation of (very) large GIS datasets,
triangulation of “planar” faces of 3D models.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 3 of 29



FIST

I Triangulates polygons with holes in 2D and 3D,
I based on ear-clipping and
I multi-level geometric hashing to speed up computation [Held, 2001a].

I Handles
I degenerate input,
I self-overlapping input,

I self-intersecting input.

I No Delaunay triangulation, but heuristics to generate “decent” triangles.

I Typical applications in industry: triangulation of (very) large GIS datasets,
triangulation of “planar” faces of 3D models.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 3 of 29



FIST

I Triangulates polygons with holes in 2D and 3D,
I based on ear-clipping and
I multi-level geometric hashing to speed up computation [Held, 2001a].

I Handles
I degenerate input,
I self-overlapping input,
I self-intersecting input.

I No Delaunay triangulation, but heuristics to generate “decent” triangles.

I Typical applications in industry: triangulation of (very) large GIS datasets,
triangulation of “planar” faces of 3D models.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 3 of 29



FIST

I Triangulates polygons with holes in 2D and 3D,
I based on ear-clipping and
I multi-level geometric hashing to speed up computation [Held, 2001a].

I Handles
I degenerate input,
I self-overlapping input,
I self-intersecting input.

I No Delaunay triangulation, but heuristics to generate “decent” triangles.

I Typical applications in industry: triangulation of (very) large GIS datasets,
triangulation of “planar” faces of 3D models.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 3 of 29



Vroni/ArcVroni

I Computes Voronoi diagrams of
I points, straight-line segments and circular arcs,
I based on randomized incremental insertion and a topology-oriented approach

[Held and Huber, 2009, Held, 2001b].

I Also computes
I (weighted) medial axis,

I offset curves, and
I maximum-inscribed

circle.

I Typical applications in industry: generation of tool paths (e.g., for machining
or sintering), generation of buffers in GIS applications.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 4 of 29



Vroni/ArcVroni

I Computes Voronoi diagrams of
I points, straight-line segments and circular arcs,
I based on randomized incremental insertion and a topology-oriented approach

[Held and Huber, 2009, Held, 2001b].

I Also computes
I (weighted) medial axis,

I offset curves, and
I maximum-inscribed

circle.

I Typical applications in industry: generation of tool paths (e.g., for machining
or sintering), generation of buffers in GIS applications.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 4 of 29



Vroni/ArcVroni

I Computes Voronoi diagrams of
I points, straight-line segments and circular arcs,
I based on randomized incremental insertion and a topology-oriented approach

[Held and Huber, 2009, Held, 2001b].

I Also computes
I (weighted) medial axis,
I offset curves, and
I maximum-inscribed

circle.

I Typical applications in industry: generation of tool paths (e.g., for machining
or sintering), generation of buffers in GIS applications.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 4 of 29



Vroni/ArcVroni

I Computes Voronoi diagrams of
I points, straight-line segments and circular arcs,
I based on randomized incremental insertion and a topology-oriented approach

[Held and Huber, 2009, Held, 2001b].

I Also computes
I (weighted) medial axis,
I offset curves, and
I maximum-inscribed

circle.

I Typical applications in industry: generation of tool paths (e.g., for machining
or sintering), generation of buffers in GIS applications.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 4 of 29



Stalgo

I Computing straight skeletons of
I planar straight-line graphs,
I based on a refined wavefront propagation using the motorcycle graph

[Huber and Held, 2012, Huber, 2012].

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 5 of 29



Stalgo

I Computing straight skeletons of
I planar straight-line graphs,
I based on a refined wavefront propagation using the motorcycle graph

[Huber and Held, 2012, Huber, 2012].

Also computes

I Mitered offset curves, and

I roof models resp. terrains.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 5 of 29



Stalgo

I Computing straight skeletons of
I planar straight-line graphs,
I based on a refined wavefront propagation using the motorcycle graph

[Huber and Held, 2012, Huber, 2012].

Also computes

I Mitered offset curves, and

I roof models resp. terrains.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 5 of 29



Success stories

I More than 100 commercial licenses world-wide for FIST, Vroni/ArcVroni and
STALGO.

I A few hundred Euros (for ArcVroni) up to a few thousand Euros/Dollars
(FIST, VRONI, STALGO).

I “Industrial-strength” implementations achieved:
I Only a handful of bug reports in more than ten years
I of heavy commercial and academic use, and lots of satisfied customers.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 6 of 29



Success stories

I More than 100 commercial licenses world-wide for FIST, Vroni/ArcVroni and
STALGO.

I A few hundred Euros (for ArcVroni) up to a few thousand Euros/Dollars
(FIST, VRONI, STALGO).

I “Industrial-strength” implementations achieved:
I Only a handful of bug reports in more than ten years
I of heavy commercial and academic use, and lots of satisfied customers.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 6 of 29



Datasets from industry

I Real-world data often means no quality at all:
I brute-force simplifications / approximations of data,
I data cleaned up manually and “visually”,
I etc.

I As a consequence:
I All sorts of degeneracies, self-intersections, tiny gaps, etc.

General position must not be assumed.

Data sizes:

I From a few thousand segments/arcs in a machining application

I to a few million segments in a GIS application.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 7 of 29



Efficiency requirements

I From real-time map generation on a smart phone

I to minutes of CPU time allowed on some high-end machine.

I In general, linear space complexity and a close-to-linear time complexity is
expected.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 8 of 29



Engineering principles: Use alternative computations

I Algebraically equivalent terms need not be equally reliable on fp arithmetic.

I Check whether a computation becomes instable, and use an alternative
approach.

I Sample application: Compute the bisector b between f and g .

g

f

b

p u

v

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 9 of 29



Engineering principles: Use alternative computations

I Algebraically equivalent terms need not be equally reliable on fp arithmetic.

I Check whether a computation becomes instable, and use an alternative
approach.

I Sample application: Compute the bisector b between f and g .

g

f

b

p u

v

g

f

b

p

u

v

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 9 of 29



Engineering principles: Topology-oriented approach

I First used by Sugihara et alii [1992, 2000].

I Define topological criteria that the output has to meet.
I Use fp-computations to choose among different topological set-ups if two or

more set-ups fulfill all criteria.

I Sample application:
I Incremental insertion of

a point into a Voronoi
diagram.

I The portion of the
Voronoi diagram to be
deleted forms a tree.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 10 of 29



Engineering principles: Topology-oriented approach

I First used by Sugihara et alii [1992, 2000].

I Define topological criteria that the output has to meet.
I Use fp-computations to choose among different topological set-ups if two or

more set-ups fulfill all criteria.

I Sample application:
I Incremental insertion of

a point into a Voronoi
diagram.

I The portion of the
Voronoi diagram to be
deleted forms a tree.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 10 of 29



Engineering principles: Topology-oriented approach

I First used by Sugihara et alii [1992, 2000].

I Define topological criteria that the output has to meet.
I Use fp-computations to choose among different topological set-ups if two or

more set-ups fulfill all criteria.

I Sample application:
I Incremental insertion of

a point into a Voronoi
diagram.

I The portion of the
Voronoi diagram to be
deleted forms a tree.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 10 of 29



Engineering principles: Topology-oriented approach

I First used by Sugihara et alii [1992, 2000].

I Define topological criteria that the output has to meet.
I Use fp-computations to choose among different topological set-ups if two or

more set-ups fulfill all criteria.

I Sample application:
I Incremental insertion of

a point into a Voronoi
diagram.

I The portion of the
Voronoi diagram to be
deleted forms a tree.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 10 of 29



Engineering principles: Topology-oriented approach

I First used by Sugihara et alii [1992, 2000].

I Define topological criteria that the output has to meet.
I Use fp-computations to choose among different topological set-ups if two or

more set-ups fulfill all criteria.

I Sample application:
I Incremental insertion of

a point into a Voronoi
diagram.

I The portion of the
Voronoi diagram to be
deleted forms a tree.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 10 of 29



Engineering principles: Epsilon relaxation

1 TypicalComputationalUnit()

2 begin
3 ε ← εmin // Set ε to maximum precision

4 while ε ≤ εmax do
5 result ← ComputeUnit(ε) // Compute some data

6 if CheckResult(result, ε) then // Topological/numerical checks

7 return result
8 else
9 ComputeUnitReset()

10 ε ← 10 · ε // Relaxation of epsilon

11 end

12 end
13 if not CheckInputLocally() then // Is input sound?

14 CleanInputLocally() // Fix problems in the input

15 RestartComputationGlobally() // Restart from scratch

16 else
17 return ComputeUnitDesperateMode() // Time to hope for the best

18 end

19 end

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 11 of 29



Engineering principles: Avoiding geometric decisions

extended
wavefront

I Simulation of wavefront propagation, DCEL

I Straight-forward: remove e1, e2, v1, v2

I Add v and relink it with v ′1, v
′
2.

I Involves geometric decisions! And multiple events can occur simultaneously.

I Better: remove v1, v2 but repot e1, e2 to v .
I No geometric decisions involved.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 12 of 29



Engineering principles: Avoiding geometric decisions

I Simulation of wavefront propagation, DCEL

I Straight-forward: remove e1, e2, v1, v2

I Add v and relink it with v ′1, v
′
2.

I Involves geometric decisions! And multiple events can occur simultaneously.

I Better: remove v1, v2 but repot e1, e2 to v .
I No geometric decisions involved.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 12 of 29



Engineering principles: Avoiding geometric decisions

v1 v2

v ′
1

v ′
2

e1
e2

I Simulation of wavefront propagation, DCEL

I Straight-forward: remove e1, e2, v1, v2

I Add v and relink it with v ′1, v
′
2.

I Involves geometric decisions! And multiple events can occur simultaneously.

I Better: remove v1, v2 but repot e1, e2 to v .
I No geometric decisions involved.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 12 of 29



Engineering principles: Avoiding geometric decisions

v1 v2

v

v ′
1

v ′
2

e1
e2

I Simulation of wavefront propagation, DCEL

I Straight-forward: remove e1, e2, v1, v2

I Add v and relink it with v ′1, v
′
2.

I Involves geometric decisions! And multiple events can occur simultaneously.

I Better: remove v1, v2 but repot e1, e2 to v .
I No geometric decisions involved.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 12 of 29



Engineering principles: Avoiding geometric decisions

v1 v2

v

v ′
1

v ′
2

e1
e2

I Simulation of wavefront propagation, DCEL

I Straight-forward: remove e1, e2, v1, v2

I Add v and relink it with v ′1, v
′
2.

I Involves geometric decisions! And multiple events can occur simultaneously.

I Better: remove v1, v2 but repot e1, e2 to v .
I No geometric decisions involved.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Geometric codes in industry 12 of 29



Adding CORE backend

Canonical adaptions:

I Set EPS to 0.

I Migrate fabs(expr) < EPS to fabs(expr) <= EPS.

Migrating C to C++:

I printf("%f", val); scanf("%f", &val);

I malloc, free → new, delete

More subtle problems encountered:

I Expr::intValue() rounds “inexact”:
I Rounds up or down, depending on expression tree.
I Decision based on finitely many bits.
I Work-around: migrate intValue() to floor().

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 13 of 29



Adding CORE backend

Canonical adaptions:

I Set EPS to 0.

I Migrate fabs(expr) < EPS to fabs(expr) <= EPS.

Migrating C to C++:

I printf("%f", val); scanf("%f", &val);

I malloc, free → new, delete

More subtle problems encountered:

I Expr::intValue() rounds “inexact”:
I Rounds up or down, depending on expression tree.
I Decision based on finitely many bits.
I Work-around: migrate intValue() to floor().

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 13 of 29



Adding CORE backend

Canonical adaptions:

I Set EPS to 0.

I Migrate fabs(expr) < EPS to fabs(expr) <= EPS.

Migrating C to C++:

I printf("%f", val); scanf("%f", &val);

I malloc, free → new, delete

More subtle problems encountered:

I Expr::intValue() rounds “inexact”:
I Rounds up or down, depending on expression tree.
I Decision based on finitely many bits.
I Work-around: migrate intValue() to floor().

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 13 of 29



Adding CORE backend

Summary:

I FIST works with CORE.

I Vroni and Stalgo could not be executed.
I Willi Mann’s bug fixes and performance patches in CORE-2.1.
I Still, several CPU-minutes did not suffice to determine sign of a single

expression stemming from simple inputs.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 14 of 29



Adding MPFR backend

Canonical adaptions:

I EPS needs to depend on precision.
I We used a heuristic formula:

EPS := εfp · 2−100·(
√

prec/53−1),

where εfp is the former machine-precision EPS.

Practical work required:

I MPFR is not shipped with a C++ wrapper.
I Code that generates wrapper classes with the required operators overloaded.

I Partial C to C++ migration, as for CORE.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 15 of 29



Adding MPFR backend

Canonical adaptions:

I EPS needs to depend on precision.
I We used a heuristic formula:

EPS := εfp · 2−100·(
√

prec/53−1),

where εfp is the former machine-precision EPS.

Practical work required:

I MPFR is not shipped with a C++ wrapper.
I Code that generates wrapper classes with the required operators overloaded.

I Partial C to C++ migration, as for CORE.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 15 of 29



Experimental results: FIST

I 21175 polygons (w/ and w/o holes).

I Six arithmetic configurations:
I fistFp, fistShew, fistCore, fistMp{53, 212, 1000}

I Conclusion:
I Shewchuck’s predicates have negligible impact on speed.
I fistMP* about 24× slower than fistFp.
I fistCore about 60× slower than fistFp.

10−8

10−7

10−6

10−5

10−4

103 104 105 106

0.08 to 0.20 · n log n µs

103 104 105 106

1.5 to 8 · n log n µs

103 104 105 106

4 to 10 · n log n µs

Figure: Runtime per seconds divided by n log n. fistFp, fistMp212, fistCore.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 16 of 29



Experimental results: FIST

I 21175 polygons (w/ and w/o holes).

I Six arithmetic configurations:
I fistFp, fistShew, fistCore, fistMp{53, 212, 1000}

I Conclusion:
I Shewchuck’s predicates have negligible impact on speed.
I fistMP* about 24× slower than fistFp.
I fistCore about 60× slower than fistFp.

10−8

10−7

10−6

10−5

10−4

103 104 105 106

0.08 to 0.20 · n log n µs

103 104 105 106

1.5 to 8 · n log n µs

103 104 105 106

4 to 10 · n log n µs

Figure: Runtime per seconds divided by n log n. fistFp, fistMp212, fistCore.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 16 of 29



Experimental results: FIST

Correctness of inexact configurations?

I Verification code:
I Bentley-Ottmann, implemented with exact mpq_t from GMP.

I Take 0.1 as closest fp-number using atof().

I No errors found!

Conclusion: Non-exactness no practical issue in pure fp applications.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 17 of 29



Experimental results: Voronoi diagrams

I Vroni versus CGAL.

I 18787 polygons (< 100000 vertices)

I Six configurations:
I vroniFp, vroniMp{53, 212, 1000}, cgvdFp
I cgvdEx: CORE-based predicate kernel

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 18 of 29



Experimental results: Voronoi diagrams

I Conclusion:
I vroniMp* about 50–70× slower than vroniFp.
I cgvd* about 50–80× slower than vroniFp.
I cgvdFp only 1.5× faster than cgvdEx.

I Crashed on 937 datasets due to fp-exception.
I On average, cgvdEx slightly faster than vroniMp*.

I cgvdEx timings vary by a factor of 20.
I A few cgvdEx results were numerically clearly wrong.

10−7

10−6

10−5

10−4

10−3

10−2

102 103 104 105

0.5 to 1.6 · n log n µs

102 103 104 105

25 to 80 · n log n µs

102 103 104 105

9 to 170 · n log n µs

Figure: Runtime per seconds divided by n log n. vroniFp, vroniMp212, cgvdEx.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 19 of 29



Experimental results: Voronoi diagrams

Numerical precision of Voronoi nodes:

I Deviation: difference in the distances of a node to its defining sites.

I Violation: another site is closer to a node than defining sites.

10−16

10−13

10−10

10−7

10−4

10−1

20000 40000 60000 80000

cgvdEx

vroniFp

vroniMp212

10−16

10−13

10−10

10−7

10−4

10−1

2000 4000 6000 8000 10000

cgvdEx

vroniFp

vroniMp212

Figure: Left: Deviation. Right: violation

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications MPFR- and CORE-support 20 of 29



EGC: A simple case study

A function test(N):

I Generate a shuffled array A with elements ±k1, . . . ,±kN , with ki being
random integers.

I We build the sum S over A.

I How long does S == Expr(0) take?

Results depend on the set-up:

I Are filters working?

I How is the sum built?
I Naive for-loop, or
I in a balanced fashion.

The “default case”: with filters, naive for-loop.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 21 of 29



EGC: A simple case study

A function test(N):

I Generate a shuffled array A with elements ±k1, . . . ,±kN , with ki being
random integers.

I We build the sum S over A.

I How long does S == Expr(0) take?

Results depend on the set-up:

I Are filters working?

I How is the sum built?
I Naive for-loop, or
I in a balanced fashion.

The “default case”: with filters, naive for-loop.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 21 of 29



I CORE, naive sum:
I O(n2) time
I w/ filter: O(n2) mem

I LEDA: virtually zero
runtime

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 22 of 29



EGC: a simple case study

What if we put stress on the filters?

I Add to the array A five times sqrt(2) and -sqrt(2).

I How long will S == Expr(0) take now?

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 23 of 29



I naive sum:
I O(n2) time
I O(n2) mem

I balanced sum:
I O(1) or O(n) time
I O(n) mem
I filters have more

impact

Disclaimer: Of course, these

expressions will unlikely occur in

real-world software.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 24 of 29



EGC/MPFR: Conclusion

I EGC software can be fast, see Shewchuck’s Triangle.

I Height-balancing expression trees might reduce the costs for time and space
significantly.

I We might observe different complexities in terms of big-Oh.
I On- and offline structural optimization strategies for expression trees are worth

to be investigated.

I Adding EGC support to non-trivial software a-posteriori can be extremely
challenging.

I Different programming styles due to focus on either numerical accuracy or
awareness of expression trees.

I EGC-aware programming right from the start is necessary.

I Adding MPFR support is straight-forward
I MPFR boosts numerical accuracy.
I MPFR helps to distinguish numerical errors from logical bugs.
I Precision-elevation instead of epsilon-relaxation?

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 25 of 29



EGC/MPFR: Conclusion

I EGC software can be fast, see Shewchuck’s Triangle.

I Height-balancing expression trees might reduce the costs for time and space
significantly.

I We might observe different complexities in terms of big-Oh.
I On- and offline structural optimization strategies for expression trees are worth

to be investigated.

I Adding EGC support to non-trivial software a-posteriori can be extremely
challenging.

I Different programming styles due to focus on either numerical accuracy or
awareness of expression trees.

I EGC-aware programming right from the start is necessary.

I Adding MPFR support is straight-forward
I MPFR boosts numerical accuracy.
I MPFR helps to distinguish numerical errors from logical bugs.
I Precision-elevation instead of epsilon-relaxation?

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 25 of 29



EGC/MPFR: Conclusion

I EGC software can be fast, see Shewchuck’s Triangle.

I Height-balancing expression trees might reduce the costs for time and space
significantly.

I We might observe different complexities in terms of big-Oh.
I On- and offline structural optimization strategies for expression trees are worth

to be investigated.

I Adding EGC support to non-trivial software a-posteriori can be extremely
challenging.

I Different programming styles due to focus on either numerical accuracy or
awareness of expression trees.

I EGC-aware programming right from the start is necessary.

I Adding MPFR support is straight-forward
I MPFR boosts numerical accuracy.
I MPFR helps to distinguish numerical errors from logical bugs.
I Precision-elevation instead of epsilon-relaxation?

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 25 of 29



EGC/MPFR: Conclusion

I EGC software can be fast, see Shewchuck’s Triangle.

I Height-balancing expression trees might reduce the costs for time and space
significantly.

I We might observe different complexities in terms of big-Oh.
I On- and offline structural optimization strategies for expression trees are worth

to be investigated.

I Adding EGC support to non-trivial software a-posteriori can be extremely
challenging.

I Different programming styles due to focus on either numerical accuracy or
awareness of expression trees.

I EGC-aware programming right from the start is necessary.

I Adding MPFR support is straight-forward
I MPFR boosts numerical accuracy.
I MPFR helps to distinguish numerical errors from logical bugs.
I Precision-elevation instead of epsilon-relaxation?

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications EGC: a simple case study 25 of 29



Discontinuous problems and EGC

Straight skeletons can change discontinuously with the input:

v
u

I The polygon is stored with finite precision to a file.
I fp-codes are likely to produce the left skeleton/roof, which is intended.
I EGC-codes produce the right skeleton/roof, which is undesired.

What is the lesser evil?

I Either waive EGC,

I Or forsake the desired output of the algorithm.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Open problems 26 of 29



Discontinuous problems and EGC

Straight skeletons can change discontinuously with the input:

v
u

I The polygon is stored with finite precision to a file.
I fp-codes are likely to produce the left skeleton/roof, which is intended.
I EGC-codes produce the right skeleton/roof, which is undesired.

What is the lesser evil?

I Either waive EGC,

I Or forsake the desired output of the algorithm.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Open problems 26 of 29



Discontinuous problems and EGC

Straight skeletons can change discontinuously with the input:

v
u

I The polygon is stored with finite precision to a file.
I fp-codes are likely to produce the left skeleton/roof, which is intended.
I EGC-codes produce the right skeleton/roof, which is undesired.

What is the lesser evil?

I Either waive EGC,

I Or forsake the desired output of the algorithm.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Open problems 26 of 29



Discontinuous problems and EGC

Straight skeletons can change discontinuously with the input:

v
u

I The polygon is stored with finite precision to a file.
I fp-codes are likely to produce the left skeleton/roof, which is intended.
I EGC-codes produce the right skeleton/roof, which is undesired.

What is the lesser evil?

I Either waive EGC,

I Or forsake the desired output of the algorithm.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Open problems 26 of 29



Discontinuous problems and EGC

Straight skeletons can change discontinuously with the input:

v
u

I The polygon is stored with finite precision to a file.
I fp-codes are likely to produce the left skeleton/roof, which is intended.
I EGC-codes produce the right skeleton/roof, which is undesired.

What is the lesser evil?

I Either waive EGC,

I Or forsake the desired output of the algorithm.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Open problems 26 of 29



Discontinuous problems and EGC

f

p

p′

p′′S

Input space

Output space

I f is discontinuous on a sub-space S (red) of the input space.
I “Reversed simulation of simplicity”?

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Open problems 27 of 29



A common yardstick

“Our algorithm runs in O(n log n) time in practice.”

“Our implementation behaved reliable in our tests.”

However:

I Experiments often comprise only a few datasets.

I Datasets have no diversity.

I Different papers compare against different data, if at all.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 28 of 29



A common yardstick

“Our algorithm runs in O(n log n) time in practice.”

“Our implementation behaved reliable in our tests.”

However:

I Experiments often comprise only a few datasets.

I Datasets have no diversity.

I Different papers compare against different data, if at all.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 28 of 29



A common yardstick

A standard computational geometry dataset library (SCGDL) would have
many benefits:

I Experiments become more meaningful and comparable:
I Precise timings and memory consumption.
I How often did an implementation crash?
I How many results were wrong?

I Enables a culture of extensive experimental evaluation.
I Brings CG and industry closer together.

I Implementing reliable geometric codes requires testing.
I An incentive to provide “gapless” and practial descriptions of algorithms.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 29 of 29



A common yardstick

A standard computational geometry dataset library (SCGDL) would have
many benefits:

I Experiments become more meaningful and comparable:
I Precise timings and memory consumption.
I How often did an implementation crash?
I How many results were wrong?

I Enables a culture of extensive experimental evaluation.
I Brings CG and industry closer together.

I Implementing reliable geometric codes requires testing.
I An incentive to provide “gapless” and practial descriptions of algorithms.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 29 of 29



A common yardstick

A standard computational geometry dataset library (SCGDL) would have
many benefits:

I Experiments become more meaningful and comparable:
I Precise timings and memory consumption.
I How often did an implementation crash?
I How many results were wrong?

I Enables a culture of extensive experimental evaluation.
I Brings CG and industry closer together.

I Implementing reliable geometric codes requires testing.
I An incentive to provide “gapless” and practial descriptions of algorithms.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 29 of 29



A common yardstick

A standard computational geometry dataset library (SCGDL) would have
many benefits:

I Experiments become more meaningful and comparable:
I Precise timings and memory consumption.
I How often did an implementation crash?
I How many results were wrong?

I Enables a culture of extensive experimental evaluation.
I Brings CG and industry closer together.

I Implementing reliable geometric codes requires testing.
I An incentive to provide “gapless” and practial descriptions of algorithms.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 29 of 29



Figure: Taken from http://joyreactor.com/post/818128

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 30 of 29

http://joyreactor.com/post/818128


Bibliography I

Held, M. (2001a).

FIST: Fast Industrial-Strength Triangulation of Polygons.

Algorithmica, 30(4):563–596.

Held, M. (2001b).

VRONI: An Engineering Approach to the Reliable and Efficient Computation of Voronoi
Diagrams of Points and Line Segments.

Comput. Geom. Theory and Appl., 18(2):95–123.

Held, M. and Huber, S. (2009).

Topology-Oriented Incremental Computation of Voronoi Diagrams of Circular Arcs and
Straight-Line Segments.

Comput. Aided Design, 41(5):327–338.

Huber, S. (2012).

Computing Straight Skeletons and Motorcycle Graphs: Theory and Practice.

Shaker Verlag.

ISBN 978-3-8440-0938-5.

Huber, S. and Held, M. (2012).

A Fast Straight-Skeleton Algorithm Based on Generalized Motorcycle Graphs.

Internat. J. Comput. Geom. Appl., 22(5):471–498.

Stefan Huber, Martin Held: Geometric Algorithms for Real-World Applications Conclusion 31 of 29


	Geometric codes in industry
	MPFR- and CORE-support
	EGC: a simple case study
	Open problems
	Conclusion

