09: Real-time Linux

Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2023

Stefan Huber: 09: Real-time Linux 1 of 16

www.sthu.org

Section 1

Real-Time Linux

Stefan Huber: 09: Real-time Linux Real-Time Linux 2 of 16

A shift towards COTS and real-time Linux

Proprietary embedded systems run typically one of two software stacks:

> Bare metal, i.e., without operating system, often on specialized hardware and proprietary embedded
designs.

> Special-purpose RTOS (real-time OS), e.g., VxWorks.

Issues

> Porting software environments (e.g., Python, Qt, or TensorFlow) can be between complex and
unachievable.

» Maintaining security updates is troublesome. Having state-of-the-art security mechanisms is
virtually unachievable.

> Leveraging complex, contemporary computing platforms is non-trivial. Operating a modern ARM
processor bare-metal is unorthodox.!

» Product strategy: Costly, longer time-to-market, risky and costly transitions of hardware.

1 Booting a modern ARM processor with proprietary boot loards or setting up the DRAM timing is delicate, especially without vendor support.

Stefan Huber: 09: Real-time Linux Real-Time Linux 2 of 16

A shift towards COTS and real-time Linux

There is a shift towards COTS (commercial off-the-shelf) computing platforms:
» Cheaper and reduced time-to-market
» Increased computational power by complex multi-core processors
» Huge software ecosystem, well established tools in industry and academia
> Improved security

Issue

They are traditionally made for a GPOS (general purpose OS), like Linux. But a GPOS focuses on high
average performance but not real time.

Two approaches:
» Co-kernel approach: Combining Linux with an RTOS.
> Single kernel approach: Making Linux per se real-time capable.

Stefan Huber: 09: Real-time Linux Real-Time Linux 3 of 16

Co-kernel approach

Combine real-time system with a GPOS is via a co-kernel approach:?
» Real-time tasks are executed by an additional RTOS, called the co-kernel.
> An intermediate layer dispatches interrupts from hardware. Sometimes hypervisor techniques are

employed here.

user space

kernel space

GPOS Real-time
(Linux) system

Dispatching layer

Hardware

2 Also called pico-kernel, nano-kernel or dual-kernel approach.
Real-Time Linux 4 of 16

Stefan Huber: 09: Real-time Linux

Co-kernel approach

Combine real-time system with a GPOS is via a co-kernel approach:?
> Real-time tasks are executed by an additional RTOS, called the co-kernel.
» An intermediate layer dispatches interrupts from hardware. Sometimes hypervisor techniques are
employed here.
> This approach is popular in industry and used by a couple of real-time Linux projects [RMF19].

RT tasks
user space
kernel space f k\‘
RT tasks
Linux kernel
GPOS Real-time L vernel | | x . L vernel
. enomai
(Linux) system RTHAL RT tasks inux kerne inux kerne RT tasks
Dispatching layer RTAI core ADEOS RTLinux
Hardware Hardware Hardware Hardware
RTAI approach Xenomai approach RTLinux appraoch

2 Also called pico-kernel, nano-kernel or dual-kernel approach.
Real-Time Linux 4 of 16

Stefan Huber: 09: Real-time Linux

Co-kernel approach

Advantage:

» Real-time is easier to achieve through special-purpose real-time subsystems.

Disadvantage:
» RT tasks are outside of Linux, so the Linux advantage is partially lost.
» RT tasks often in kernel space rather than user space.

» |PC between kernels needs special care.

We would wish for a single-kernel approach: a real-time capable Linux kernel. But this is much harder
to achieve.

Stefan Huber: 09: Real-time Linux Real-Time Linux 5 of 16

PREEMPT_RT patches

PREEMPT_RT makes the Linux kernel real-time capable.

» High-resolution timers, IRQ threads, ... RT tasks
) user space
> Preemptive kernel data structures il
kernel space

A set of patches first released® 2006, see [RMF19]
» By now almost everything was merged into mainline Linux. Linux + PREEMPT_RT

» Parts of “fully preemptive kernel” missing.
> Maybe mainlined 20247 [Cor23]

Fully preemptive kernel

» If a low-priority task ends up in a non-preemptive kernel code then it can delay the execution of
real-time tasks, which may then miss its deadline.

Hardware

» Hence, we would like to minimize all non-preemptive codes in the kernel.

> Also improves responsiveness for desktop applications beyond real-time.

3 On LWN in 2004, but work started in 1999. [Cor23]

Stefan Huber: 09: Real-time Linux Real-Time Linux 6 of 16

Linux scheduling classes

The Linux kernel provides different scheduler classes:
SCHED _NORMAL By default a process is scheduled in this non-real-time class. Designed for mixed load,
like batch processing, number crunching and desktop interaction.

SCHED_RR and SCHED FIFO These are POSIX-compliant real-time classes with static priorities that take
precedence over SCHED _NORMAL. A running thread is preempted only by a thread of
higher priority or by yielding the CPU voluntarily.*

SCHED DEADLINE A scheduler for the sporadic task model with deadlines. It implements a global
earliest deadline first (GEDF) algorithm (with Constant Bandwidth Server (CBS)).

The SCHED_RR and SCHED_FIFO classes do not consider deadlines for real-time scheduling, but we have
to choose the static priorities and design the tasks in a way to achieve a real-time system.

See details in man sched, [Oli18a] and [Oli18b].

4 SCHED.RR also implements time-slicing for tasks of equal priority.

Stefan Huber: 09: Real-time Linux Real-Time Linux 7 of 16

The task model of SCHED DEADLINE

By means of sched_setattr() we set runtime r, deadline d and period p.
» Every pns we spend rns within the first d ns.
» It models a sequence of jobs with WCET at most rns.

start time
i : abs. deadline

request fime runtime _ deadline d R

v Y job v =

{3 } I
N . t.
(relative) deadline d R runtime r
- period p i period p |

> The kernel performs a schedulability test® and requires 0 < r < d < p.
» A thread calling sched_yie1d() marks the end of the of the current job and waits for the next period.

5 On a single-core system it is necessary and sufficient. On a multi-core system it only sufficient.

Stefan Huber: 09: Real-time Linux Real-Time Linux 8 of 16

EDF and bad jobs

Two tasks Ty and T, with deadline equals period.

> At x we preempt T; and schedule T, whose deadline is earlier. At xx we keep running T;, whose
deadline is earlier.

Stefan Huber: 09: Real-time Linux Real-Time Linux 9 of 16

EDF and bad jobs

Two tasks Ty and T, with deadline equals period.

> At x we preempt T; and schedule T, whose deadline is earlier. At xx we keep running T;, whose
deadline is earlier.

A bad job of T; can force T, to miss its deadline.

» A plain EDF is lacking temporal isolation between threads!

Stefan Huber: 09: Real-time Linux Real-Time Linux 9 of 16

Constant Bandwidth Server

SCHED_DEADLINE implements EDF with Constant Bandwidth Server (CBS) algorithm.
> A job gets a “time budget” equal to its runtime parameter.
> |If a job exhausted its budget, it is throtteled. That means, it is not scheduled until next period.
» This provides temporal isolation between threads.

Stefan Huber: 09: Real-time Linux Real-Time Linux 10 of 16

SCHED_DEADLINE: Three application models

int main (int argc, char x*xargv) {

/* A task that runs 20ms within 100ms periods. */
struct sched_attr attr;

memset (&attr, 0, sizeof (attr));

attr.size = sizeof (attr);

attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 20000000;

attr.sched_deadline = attr.sched_period = 100000000;

int flags = 0;

if (sched_setattr (0, &attr, flags) < 0) {
perror ("sched_setattr() failed");
return EXIT_FAILURE;

}

/* The actual work... */
work ();
return EXIT_SUCCESS;

Stefan Huber: 09: Real-time Linux Real-Time Linux 11 of 16

SCHED_DEADLINE: Three application models

/% Model: Periodic tasks */
void work() {
while (1) {
/* Cylic work. WCET of 20ms. */
periodic_job();
/* Notify scheduler about end of
* gob. Only for real-time
* scheduling! */
sched_yield () ;

Stefan Huber: 09: Real-time Linux Real-Time Linux 12 of 16

SCHED_DEADLINE: Three application models

/% Model: Periodic tasks */
void work() {
while (1) {
/* Cylic work. WCET of 20ms. */
periodic_job();
/* Notify scheduler about end of
* gob. Only for real-time
* scheduling! */
sched_yield () ;

Stefan Huber: 09: Real-time Linux

/* Model: Sporadic event-handling task.
void work() {
while (1) {
/* Sleep until nezt event. */
blocking_wait_for_event ();
/* After wakeup: React on event,
* e.g., process data, produce
* result. */
sporadic_job();

Real-Time Linux

*/

12 of 16

SCHED_DEADLINE: Three application

/* Model: Periodic tasks */ /* Model: Sporadic event-handling task. */
void work() { void work() {
while (1) { while (1) {
/* Cylic work. WCET of 20ms. */ /* Sleep until next event. */
periodic_job(); blocking_wait_for_event ();
/* Notify scheduler about end of /* After wakeup: React on event,
* gob. Only for real-time * e.g., process data, produce
* scheduling! */ * result. */
sched_yield (); sporadic_job();
} }
} }

/* Model: Aperiodic, bandwidth-guaranteed computing. */
void work() {
/* Just compute, without blocking or calls or yield. The CBS will throttle
* the thread after 20ms per period. */
while (1);

Stefan Huber: 09: Real-time Linux Real-Time Linux 12 of 16

Linux commands and tools

Can change real-time attributes of processes, e.g., scheduling policies and their attributes.

cyclictest

Performs timer latency tests with various different modes of operation.

> Part of the rt-tests suite [rt-tests], which also includes signaltest, fwlatdetect, and many more.
» Can set processor affinity or mlockall

> For different scheduling policies and priorities, with different timers, like nanosleep or POSIX timers.

latencytop

For visualizing and debugging system latencies and their causes
» For kernel and user space

Stefan Huber: 09: Real-time Linux Real-Time Linux 13 of 16

In practice, real-time tasks are often dependent:
> Precedence of tasks: Task A's job needs to be done before task B's job can run, e.g., because it
depends on A’s result.
» Mutual exclusion: Two or more tasks access the same mutual-exclusive resource.
> A high-priority task is indirectly delayed by a low-priority task.
» This can make a real-time task miss its deadline.

Stefan Huber: 09: Real-time Linux Real-Time Linux 14 of 16

Priority inversion

Mutual exclusion can lead to the phenomenon called priority inversion:
> A task of lower priority can effectively make a task of higher priority to wait.

Example:
» Tasks Ti, T», T3 with decreasing priority on a single processor.
» T3 acquires a lock on a mutex first. Ty is blocked when acquiring the same mutex. T3 quickly

releases the lock in favor of T; in a well-designed system.

ready\/\ /\/ blocked
high priority T; U

acquired

\/\ H /\/ release
low priority T N | .

Real-Time Linux 15 of 16

Stefan Huber: 09: Real-time Linux

Priority inversion

Mutual exclusion can lead to the phenomenon called priority inversion:

> A task of lower priority can effectively make a task of higher priority to wait.
Example:

» Tasks Ti, T», T3 with decreasing priority on a single processor.

» T3 acquires a lock on a mutex first. Ty is blocked when acquiring the same mutex. T3 quickly
releases the lock in favor of T; in a well-designed system.

» T, delays T3 from giving up the lock, which makes T to wait despite its priority: Priority inversion

d
rea y\/\ /\/ blocked effectively delayed by T» \/\
high priority T3 U l | T1
»

ired ready ;'/ \‘
acqw\r‘e H/\/release M T2
\ “ “
low prierity 75 [|l [1. 1 * M Ts

Stefan Huber: 09: Real-time Linux

Real-Time Linux 15 of 16

Priority inheritance

The Linux kernel implements priority inheritance to avoid priority inversion:
» T, is blocked because T3 holds the lock. Then T3 temporarily inherits the higher priority of T;.
» So a mid-priority task T, cannot delay T3 from releasing the lock.

ready\/\ /\/ blocked T3 inherits prio of T
o ready
high priority T3 U W T1
acquired \ ‘ release ready\/\‘l_l T
W !
low priority 7, [Tl [1. | I T3

Stefan Huber: 09: Real-time Linux Real-Time Linux 16 of 16

References |

[Cor23]
[Oli18a]
[Oli18b]

[RMF19]

[rt-tests]

Jonathan Corbet. “The real realtime preemption end game”. In: LWN.net (Nov. 2023). URL:
https://lwn.net/Articles/951337/.

Daniel Bristot de Oliveira. “Deadline scheduling part 1 — overview and theory”. In: LW\ net
(Jan. 2018). URL: https://lwn.net/Articles/743740/.

Daniel Bristot de Oliveira. "Deadline scheduling part 2 — details and usage”. In: LWN.net
(Jan. 2018). URL: https://lwn.net/Articles/743946/

Federico Reghenzani, Giuseppe Massari, and William Fornaciari. “The Real-Time Linux
Kernel: A Survey on PREEMPT_RT". In: ACM Comput. Surv. 52.1 (Feb. 2019), 18:1-18:36.
DOI: 10.1145/3297714.

A collection of latency testing tools for the linux(-rt) kernel. UR1.:
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/about/.

https://lwn.net/Articles/951337/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743946/
https://doi.org/10.1145/3297714
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/about/

	Real-Time Linux

