
09: Real-time Linux
Microcontrollers

Stefan Huber
www.sthu.org

Dept. for Information Technologies and Digitalisation
FH Salzburg

Winter 2023

Stefan Huber: 09: Real-time Linux 1 of 16

www.sthu.org

Section 1

Real-Time Linux

Stefan Huber: 09: Real-time Linux Real-Time Linux 2 of 16

A shift towards COTS and real-time Linux

Proprietary embedded systems run typically one of two software stacks:
I Bare metal, i.e., without operating system, often on specialized hardware and proprietary embedded

designs.
I Special-purpose RTOS (real-time OS), e.g., VxWorks.

Issues
I Porting software environments (e.g., Python, Qt, or TensorFlow) can be between complex and

unachievable.
I Maintaining security updates is troublesome. Having state-of-the-art security mechanisms is

virtually unachievable.
I Leveraging complex, contemporary computing platforms is non-trivial. Operating a modern ARM

processor bare-metal is unorthodox.1

I Product strategy: Costly, longer time-to-market, risky and costly transitions of hardware.

1 Booting a modern ARM processor with proprietary boot loards or setting up the DRAM timing is delicate, especially without vendor support.

Stefan Huber: 09: Real-time Linux Real-Time Linux 2 of 16

A shift towards COTS and real-time Linux

There is a shift towards COTS (commercial off-the-shelf) computing platforms:
I Cheaper and reduced time-to-market
I Increased computational power by complex multi-core processors
I Huge software ecosystem, well established tools in industry and academia
I Improved security

Issue
They are traditionally made for a GPOS (general purpose OS), like Linux. But a GPOS focuses on high
average performance but not real time.

Two approaches:
I Co-kernel approach: Combining Linux with an RTOS.
I Single kernel approach: Making Linux per se real-time capable.

Stefan Huber: 09: Real-time Linux Real-Time Linux 3 of 16

Co-kernel approach

Combine real-time system with a GPOS is via a co-kernel approach:2

I Real-time tasks are executed by an additional RTOS, called the co-kernel.
I An intermediate layer dispatches interrupts from hardware. Sometimes hypervisor techniques are

employed here.

I This approach is popular in industry and used by a couple of real-time Linux projects [RMF19].

Hardware

Dispatching layer

GPOS
(Linux)

Real-time
system

user space

kernel space

2 Also called pico-kernel, nano-kernel or dual-kernel approach.

Stefan Huber: 09: Real-time Linux Real-Time Linux 4 of 16

Co-kernel approach
Combine real-time system with a GPOS is via a co-kernel approach:2

I Real-time tasks are executed by an additional RTOS, called the co-kernel.
I An intermediate layer dispatches interrupts from hardware. Sometimes hypervisor techniques are

employed here.
I This approach is popular in industry and used by a couple of real-time Linux projects [RMF19].

Hardware

Dispatching layer

GPOS
(Linux)

Real-time
system

Hardware

RTLinux

RT tasks

Hardware

ADEOS

Xenomai

RT tasks

Hardware

RTAI core

Linux kernel

RT tasksRTHAL

RT tasks

Linux kernel

user space

kernel space

RTAI approach Xenomai approach RTLinux appraoch

Linux kernel

2 Also called pico-kernel, nano-kernel or dual-kernel approach.

Stefan Huber: 09: Real-time Linux Real-Time Linux 4 of 16

Co-kernel approach

Advantage:
I Real-time is easier to achieve through special-purpose real-time subsystems.

Disadvantage:
I RT tasks are outside of Linux, so the Linux advantage is partially lost.
I RT tasks often in kernel space rather than user space.
I IPC between kernels needs special care.

Summary
We would wish for a single-kernel approach: a real-time capable Linux kernel. But this is much harder
to achieve.

Stefan Huber: 09: Real-time Linux Real-Time Linux 5 of 16

PREEMPT RT patches
PREEMPT RT makes the Linux kernel real-time capable.
I High-resolution timers, IRQ threads, . . .
I Preemptive kernel data structures

A set of patches first released3 2006, see [RMF19]
I By now almost everything was merged into mainline Linux.
I Parts of “fully preemptive kernel” missing.
I Maybe mainlined 2024? [Cor23]

Hardware

Linux + PREEMPT RT

user space

kernel space

RT tasks

Fully preemptive kernel
I If a low-priority task ends up in a non-preemptive kernel code then it can delay the execution of

real-time tasks, which may then miss its deadline.
I Hence, we would like to minimize all non-preemptive codes in the kernel.
I Also improves responsiveness for desktop applications beyond real-time.

3 On LWN in 2004, but work started in 1999. [Cor23]

Stefan Huber: 09: Real-time Linux Real-Time Linux 6 of 16

Linux scheduling classes

The Linux kernel provides different scheduler classes:
SCHED NORMAL By default a process is scheduled in this non-real-time class. Designed for mixed load,

like batch processing, number crunching and desktop interaction.
SCHED RR and SCHED FIFO These are POSIX-compliant real-time classes with static priorities that take

precedence over SCHED NORMAL. A running thread is preempted only by a thread of
higher priority or by yielding the CPU voluntarily.4

SCHED DEADLINE A scheduler for the sporadic task model with deadlines. It implements a global
earliest deadline first (GEDF) algorithm (with Constant Bandwidth Server (CBS)).

The SCHED RR and SCHED FIFO classes do not consider deadlines for real-time scheduling, but we have
to choose the static priorities and design the tasks in a way to achieve a real-time system.

See details in man sched, [Oli18a] and [Oli18b].

4 SCHED RR also implements time-slicing for tasks of equal priority.

Stefan Huber: 09: Real-time Linux Real-Time Linux 7 of 16

The task model of SCHED DEADLINE

By means of sched_setattr() we set runtime r , deadline d and period p.
I Every p ns we spend r ns within the first d ns.
I It models a sequence of jobs with WCET at most r ns.

request time

start time

runtime r abs. deadline

(relative) deadline d

period p

job

period p

deadline d

runtime r

I The kernel performs a schedulability test5 and requires 0 < r ≤ d ≤ p.
I A thread calling sched_yield() marks the end of the of the current job and waits for the next period.

5 On a single-core system it is necessary and sufficient. On a multi-core system it only sufficient.

Stefan Huber: 09: Real-time Linux Real-Time Linux 8 of 16

EDF and bad jobs
Two tasks T1 and T2 with deadline equals period.
I At ? we preempt T1 and schedule T2, whose deadline is earlier. At ?? we keep running T1, whose

deadline is earlier.

?

??
T1: r = 6, p = 12

T2: r = 4, p = 8

A bad job of T1 can force T2 to miss its deadline.
I A plain EDF is lacking temporal isolation between threads!

A bad job

Stefan Huber: 09: Real-time Linux Real-Time Linux 9 of 16

EDF and bad jobs
Two tasks T1 and T2 with deadline equals period.
I At ? we preempt T1 and schedule T2, whose deadline is earlier. At ?? we keep running T1, whose

deadline is earlier.

?

??
T1: r = 6, p = 12

T2: r = 4, p = 8

A bad job of T1 can force T2 to miss its deadline.
I A plain EDF is lacking temporal isolation between threads!

A bad job

Stefan Huber: 09: Real-time Linux Real-Time Linux 9 of 16

Constant Bandwidth Server

SCHED DEADLINE implements EDF with Constant Bandwidth Server (CBS) algorithm.
I A job gets a “time budget” equal to its runtime parameter.
I If a job exhausted its budget, it is throtteled. That means, it is not scheduled until next period.
I This provides temporal isolation between threads.

? ? ?

Stefan Huber: 09: Real-time Linux Real-Time Linux 10 of 16

SCHED DEADLINE: Three application models

1 int main (int argc, char **argv) {
2

3 /* A task that runs 20ms within 100ms periods. */
4 struct sched_attr attr;
5 memset(&attr, 0, sizeof(attr));
6 attr.size = sizeof(attr);
7 attr.sched_policy = SCHED_DEADLINE;
8 attr.sched_runtime = 20000000;
9 attr.sched_deadline = attr.sched_period = 100000000;

10

11 int flags = 0;
12 if (sched_setattr(0, &attr, flags) < 0) {
13 perror("sched_setattr() failed");
14 return EXIT_FAILURE;
15 }
16

17 /* The actual work... */
18 work();
19 return EXIT_SUCCESS;
20 }

Stefan Huber: 09: Real-time Linux Real-Time Linux 11 of 16

SCHED DEADLINE: Three application models

1 /* Model: Periodic tasks */
2 void work() {
3 while(1) {
4 /* Cylic work. WCET of 20ms. */
5 periodic_job();
6 /* Notify scheduler about end of
7 * job. Only for real-time
8 * scheduling! */
9 sched_yield();

10 }
11 }

1 /* Model: Sporadic event-handling task. */
2 void work() {
3 while(1) {
4 /* Sleep until next event. */
5 blocking_wait_for_event();
6 /* After wakeup: React on event,
7 * e.g., process data, produce
8 * result. */
9 sporadic_job();

10 }
11 }

1 /* Model: Aperiodic , bandwidth -guaranteed computing. */
2 void work() {
3 /* Just compute, without blocking or calls or yield. The CBS will throttle
4 * the thread after 20ms per period. */
5 while(1);
6 }

Stefan Huber: 09: Real-time Linux Real-Time Linux 12 of 16

SCHED DEADLINE: Three application models

1 /* Model: Periodic tasks */
2 void work() {
3 while(1) {
4 /* Cylic work. WCET of 20ms. */
5 periodic_job();
6 /* Notify scheduler about end of
7 * job. Only for real-time
8 * scheduling! */
9 sched_yield();

10 }
11 }

1 /* Model: Sporadic event-handling task. */
2 void work() {
3 while(1) {
4 /* Sleep until next event. */
5 blocking_wait_for_event();
6 /* After wakeup: React on event,
7 * e.g., process data, produce
8 * result. */
9 sporadic_job();

10 }
11 }

1 /* Model: Aperiodic , bandwidth -guaranteed computing. */
2 void work() {
3 /* Just compute, without blocking or calls or yield. The CBS will throttle
4 * the thread after 20ms per period. */
5 while(1);
6 }

Stefan Huber: 09: Real-time Linux Real-Time Linux 12 of 16

SCHED DEADLINE: Three application models

1 /* Model: Periodic tasks */
2 void work() {
3 while(1) {
4 /* Cylic work. WCET of 20ms. */
5 periodic_job();
6 /* Notify scheduler about end of
7 * job. Only for real-time
8 * scheduling! */
9 sched_yield();

10 }
11 }

1 /* Model: Sporadic event-handling task. */
2 void work() {
3 while(1) {
4 /* Sleep until next event. */
5 blocking_wait_for_event();
6 /* After wakeup: React on event,
7 * e.g., process data, produce
8 * result. */
9 sporadic_job();

10 }
11 }

1 /* Model: Aperiodic , bandwidth -guaranteed computing. */
2 void work() {
3 /* Just compute, without blocking or calls or yield. The CBS will throttle
4 * the thread after 20ms per period. */
5 while(1);
6 }

Stefan Huber: 09: Real-time Linux Real-Time Linux 12 of 16

Linux commands and tools

chrt
Can change real-time attributes of processes, e.g., scheduling policies and their attributes.

cyclictest
Performs timer latency tests with various different modes of operation.
I Part of the rt-tests suite [rt-tests], which also includes signaltest, fwlatdetect, and many more.
I Can set processor affinity or mlockall
I For different scheduling policies and priorities, with different timers, like nanosleep or POSIX timers.

latencytop
For visualizing and debugging system latencies and their causes
I For kernel and user space

Stefan Huber: 09: Real-time Linux Real-Time Linux 13 of 16

Dependent tasks

In practice, real-time tasks are often dependent:
I Precedence of tasks: Task A’s job needs to be done before task B’s job can run, e.g., because it

depends on A’s result.
I Mutual exclusion: Two or more tasks access the same mutual-exclusive resource.

I A high-priority task is indirectly delayed by a low-priority task.
I This can make a real-time task miss its deadline.

Stefan Huber: 09: Real-time Linux Real-Time Linux 14 of 16

Priority inversion

Mutual exclusion can lead to the phenomenon called priority inversion:
I A task of lower priority can effectively make a task of higher priority to wait.

Example:
I Tasks T1, T2, T3 with decreasing priority on a single processor.
I T3 acquires a lock on a mutex first. T1 is blocked when acquiring the same mutex. T3 quickly

releases the lock in favor of T1 in a well-designed system.

I T2 delays T3 from giving up the lock, which makes T1 to wait despite its priority: Priority inversion.

T1

T3

acquired

blocked

release

high priority

low priority

ready

Stefan Huber: 09: Real-time Linux Real-Time Linux 15 of 16

Priority inversion

Mutual exclusion can lead to the phenomenon called priority inversion:
I A task of lower priority can effectively make a task of higher priority to wait.

Example:
I Tasks T1, T2, T3 with decreasing priority on a single processor.
I T3 acquires a lock on a mutex first. T1 is blocked when acquiring the same mutex. T3 quickly

releases the lock in favor of T1 in a well-designed system.
I T2 delays T3 from giving up the lock, which makes T1 to wait despite its priority: Priority inversion.

T1

T3

T1

T3

T2
acquired

blocked

release

effectively delayed by T2

high priority

low priority

ready

ready

Stefan Huber: 09: Real-time Linux Real-Time Linux 15 of 16

Priority inheritance

The Linux kernel implements priority inheritance to avoid priority inversion:
I T1 is blocked because T3 holds the lock. Then T3 temporarily inherits the higher priority of T1.
I So a mid-priority task T2 cannot delay T3 from releasing the lock.

T1

T3

acquired

blocked

release

high priority

low priority

ready

T1

T3

T2

ready

ready

ready

T3 inherits prio of T1

Stefan Huber: 09: Real-time Linux Real-Time Linux 16 of 16

References I

[Cor23] Jonathan Corbet. “The real realtime preemption end game”. In: LWN.net (Nov. 2023). url:
https://lwn.net/Articles/951337/.

[Oli18a] Daniel Bristot de Oliveira. “Deadline scheduling part 1 — overview and theory”. In: LWN.net
(Jan. 2018). url: https://lwn.net/Articles/743740/.

[Oli18b] Daniel Bristot de Oliveira. “Deadline scheduling part 2 — details and usage”. In: LWN.net
(Jan. 2018). url: https://lwn.net/Articles/743946/.

[RMF19] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. “The Real-Time Linux
Kernel: A Survey on PREEMPT RT”. In: ACM Comput. Surv. 52.1 (Feb. 2019), 18:1–18:36.
doi: 10.1145/3297714.

[rt-tests] A collection of latency testing tools for the linux(-rt) kernel. url:
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/about/.

https://lwn.net/Articles/951337/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743946/
https://doi.org/10.1145/3297714
https://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.git/about/

	Real-Time Linux

