
01: Introduction
Distributed Software Architectures

Stefan Huber <shuber.lba@fh-salzburg.ac.at>

March 8, 2019

Stefan Huber: 01: Introduction 1 of 23

mailto:shuber.lba@fh-salzburg.ac.at

Section 1

Course formalities

Stefan Huber: 01: Introduction Course formalities 2 of 23

Distributed Software Architectures

This course is about Software Architectures of Distributed Systems.

Topics:
I Ways to organize distributed software systems
I Foundations of distributed systems

I Communication
I Coordination
I Virtualization & operating systems
I Name systems
I Replication and consistency
I Security for distributed systems

Related fields and courses:
I Software engineering
I Computer networks
I Operating systems

Stefan Huber: 01: Introduction Course formalities 2 of 23

Course organization

The course is split into lecture (VL) and tutorial (UE) units.

Grading:
I 60% lecture: Two 45 min. tests
I 40% tutorial: Exercises, presentations, coding assignments

FR 08.03. 08:15–09:45 VL
FR 22.03. 08:15–09:45 VL 10:00–11:30 UE
TH 04.04. 08:15–09:45 VL 10:00–11:30 UE
FR 26.04. 08:15–09:45 VL 10:00–11:30 UE
TH 09.05. 08:15–09:45 VL 10:00–11:30 UE Test
FR 07.06. 08:15–09:45 VL 10:00–11:30 UE
FR 14.06. 08:15–09:45 VL

MO 24.06. 08:15–09:45 UE Test

Literature:
I van Steen, Tanenbaum (2017): Distributed Systems

Free digital copy: https://www.distributed-systems.net

Stefan Huber: 01: Introduction Course formalities 3 of 23

https://www.distributed-systems.net

About me

Short bio:
I B&R Industrial Automation:

I Headed an R&D team of 5 PhDs in mathematics, computer science and control theory.
I Invented the software system operating ACOPOStrak.
I Recently switched to a new project Digital Automation.

I PostDoc researcher at IST Austria in the field of computational topology.
I Senior Scientist (math), PostDoc (CS), and PhD student (CS) at the Univ. of

Salzburg in the field of computational geometry.
I Doctorate in CS, Master in Math, Master in CS, Bachelor in Math and Bachelor in

CS in 2011, 2009, 2008, 2007 and 2006.

Stefan Huber: 01: Introduction Course formalities 4 of 23

Section 2

Introduction to Distributed Systems

Stefan Huber: 01: Introduction Introduction to Distributed Systems 5 of 23

What is a Distributed System?

A computing system that is distributed on a computer network.
I Collection of autonomous components (nodes).
I Nodes cooperate to form a single coherent system.
I Nodes are distributed on and communicate via a computer network.

Characterization (van Steen)
A distributed system is a collection of autonomous computing elements that appears to
its users as a single coherent system.

Stefan Huber: 01: Introduction Introduction to Distributed Systems 5 of 23

Examples for distributed systems

WWW Master-slave. The World Wide Web is the probably the largest
distributed system. Web browsers and web servers as nodes that
communicate via HTTP protocol over the Internet. For the user the
WWW appears as a single system.

Bittorrent A peer-to-peer file sharing protocol using so-called distributed hash tables
to find peers.

GIMPS Great Internet Mersenne Prime Search is an example for distributed
computing.

NFS The Network File System is a distributed file system based on Remote
Procedure Calls.

Car A car comprises a distributed system of several dozens ECUs, controlling
the engine, brakes, doors, or HMI. A typical automotive network is CAN
bus.

Automation An industrial machine comprises controllers, drives, sensors, HMI with
realtime communication over a fieldbus.

Stefan Huber: 01: Introduction Introduction to Distributed Systems 6 of 23

Examples for distributed systems

WWW Master-slave. The World Wide Web is the probably the largest
distributed system. Web browsers and web servers as nodes that
communicate via HTTP protocol over the Internet. For the user the
WWW appears as a single system.

Bittorrent A peer-to-peer file sharing protocol using so-called distributed hash tables
to find peers.

GIMPS Great Internet Mersenne Prime Search is an example for distributed
computing.

NFS The Network File System is a distributed file system based on Remote
Procedure Calls.

Car A car comprises a distributed system of several dozens ECUs, controlling
the engine, brakes, doors, or HMI. A typical automotive network is CAN
bus.

Automation An industrial machine comprises controllers, drives, sensors, HMI with
realtime communication over a fieldbus.

Stefan Huber: 01: Introduction Introduction to Distributed Systems 6 of 23

Examples for distributed systems

WWW Master-slave. The World Wide Web is the probably the largest
distributed system. Web browsers and web servers as nodes that
communicate via HTTP protocol over the Internet. For the user the
WWW appears as a single system.

Bittorrent A peer-to-peer file sharing protocol using so-called distributed hash tables
to find peers.

GIMPS Great Internet Mersenne Prime Search is an example for distributed
computing.

NFS The Network File System is a distributed file system based on Remote
Procedure Calls.

Car A car comprises a distributed system of several dozens ECUs, controlling
the engine, brakes, doors, or HMI. A typical automotive network is CAN
bus.

Automation An industrial machine comprises controllers, drives, sensors, HMI with
realtime communication over a fieldbus.

Stefan Huber: 01: Introduction Introduction to Distributed Systems 6 of 23

Characteristics: Collection of autonomous nodes

I Nodes are in principle independent from each other, but cooperate.
I Nodes run concurrently.
I The collection may be very heterogeneous.
I Each node has its own notion of time. There may not be a global clock.
I Cooperation requires communication, e.g., message passing.
I Notion of an overlay network, e.g., the communication topology:

I Structured overlay: Tree, ring, grid, et cetera.
I Unstructured overlay: Randomly chosen neighborhood.

I Group management for the collection of nodes:
I Open group: Any node can join
I Closed group: Access is restricted

Stefan Huber: 01: Introduction Introduction to Distributed Systems 7 of 23

Characteristics: Single coherent system

I Wiktionary on coherent: Unified; sticking together; making up a whole.
I Level of coherence versus the level of distribution.
I Distribution transparency:

I User does not need to know where something is processed, stored, et cetera.
I Half of system engineering is abstraction! Abstraction means hiding details.

I Fault tolerance

Characterization (Lamport)
[A distributed system is] one in which the failure of a computer you didn’t even know to
exist can render your computer unusable.

Stefan Huber: 01: Introduction Introduction to Distributed Systems 8 of 23

Section 3

Python

Stefan Huber: 01: Introduction Python 9 of 23

Python: Motivation

Python is popular:
I 3rd on TIOBE index 01/2019: Java, C, Python, C++, VB.net, JS, C#

Python is very simple and easy to learn:
I Very popular at MIT courses
I Syntax is simple and expressive, reasonably close to pseudo code
I Distributed Systems uses Python for examples

Python is technologically rich:
I Originated in 1990
I Interpreted, platform independent
I Duck typing, very dynamic
I General-purpose, multi-paradigm: object-oriented, functional, aspect-oriented, . . .
I A rich standard library and a huge universe of third-party modules
I IPython and friends make it a Matlab alternative

Stefan Huber: 01: Introduction Python 9 of 23

Python: Hello World

This is a Python 3 hello world example:
1 #!/ usr / bin / env python3
2
3 print (" Hello World !")

Listing 1: helloworld.py

Learning Python:
I Python tutorial:

https://docs.python.org/3/tutorial/
I Python in 10 minutes:

https://www.stavros.io/tutorials/python/
I Python 101:

http://www.davekuhlman.org/python_101.html
For Python 2, but mentions the differences to Python 3.

Brief tutorials, but for Python 2:
I Google for Education:

https://developers.google.com/edu/python/introduction
I A very short introduction by scipy:

http://scipy-lectures.org/language/python_language.html

Stefan Huber: 01: Introduction Python 10 of 23

https://docs.python.org/3/tutorial/
https://www.stavros.io/tutorials/python/
http://www.davekuhlman.org/python_101.html
https://developers.google.com/edu/python/introduction
http://scipy-lectures.org/language/python_language.html

Python: Variables and types

Python can be used in an interactive interpreter:
1 >>> a = 2
2 >>> b = True
3 >>> print (a, b)
4 2 True
5 >>> type(a), type(b), type(" hello "), type(’world ’)
6 (< class ’int ’>, <class ’bool ’>, <class ’str ’>, <class ’str ’ >)
7 >>> " hello " + ’world ’
8 ’helloworld ’
9 >>> 2 + 2, 3 * 4, 4**2 , 17 / 3, 17 // 3, 3 * "no", True and False or True

10 (4, 7, 16, 5.666666666666667 , 5, ’nonono ’, True)
11 >>> r"c:\ who\uses\ windows \ anyways "
12 ’c:\\ who \\ uses \\ windows \\ anyways ’
13 >>> """ A multiline
14 string can be
15 handy """
16 ’A multiline \ nstring can be\ nhandy ’
17 >>> c = " slicing "
18 >>> c[0] , c[-1], c[1:4] , c[-3:] , c[:] , c[::2] , c[:: -1] , len(c)
19 (’s’, ’g’, ’lic ’, ’ing ’, ’slicing ’, ’siig ’, ’gnicils ’), 7
20 >>> c[:2] + c[2:]
21 ’slicing ’

Listing 2: Variables and basic types

Stefan Huber: 01: Introduction Python 11 of 23

Python: Lists

A list is a heterogeneous sequence of elements.
1 >>> squares = [1, 4, 9, 16, 25]
2 >>> type(squares)
3 <class ’list ’>
4 >>> squares [:: -1] # Indexing and slicing works for all sequence types
5 [25 , 16, 9, 4, 1]
6 >>> squares + [36 , 49, 64, 81, 100]
7 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
8 >>> bag = [" hello ", 42, [0, 1]] # Can be heterogeneous
9 >>> bag [0] = "hi!"

10 >>> bag. append (3.14)
11 >>> bag
12 [’hi!’, 42, [0, 1], 3.14]

Listing 3: Lists

A tuple is, like a list, a sequence type, but immutable.
1 >>> tri = 23, 42, 100 # The same as (23 , 42, 100)
2 >>> type(tri)
3 <class ’tuple ’>
4 >>> tri [0] , len(tri) # Note that this expression is a tuple of two
5 (23 , 3)
6 >>> a, b, c = tri # Assign tri to the tuple (a, b, c)
7 >>> print (a, b, c)
8 23 42 100

Listing 4: Tuples

Stefan Huber: 01: Introduction Python 12 of 23

Python: A first program

1 #!/ usr / bin / env python3
2
3 a, b = 0, 1
4 while a < 10:
5 print (a)
6 a, b = b, a + b

Listing 5: The Fibonacci series

Some remarks:
I We use tuples for multiple assignments and variable definitions
I Indentation defines blocks. It is 4 spaces, see

https://www.python.org/dev/peps/pep-0008/.
I The function help() in the interpreter gives help on anything, e.g., print().

Stefan Huber: 01: Introduction Python 13 of 23

https://www.python.org/dev/peps/pep-0008/

Python: More control statements

1 #!/ usr / bin / env python3
2
3 x = int(input (" Enter a whole number : "))
4
5 if x < 0:
6 x = 0
7 print (" Negative changed to zero")
8 elif x == 0:
9 print ("Zero")

10 else:
11 print (" Positive ")
12
13
14 for w in " hello !": # Iterating over a sequence
15 print (w)
16 if w == ’o’:
17 print ("exit loop")
18 break
19
20 for i in range (5): # range (5) generates the numbers 0, 1, 2, 3, 4
21 print (i)
22
23 while True: # Endless loop . Exit by pressing ctrl +c
24 pass

Listing 6: More control statements

Stefan Huber: 01: Introduction Python 14 of 23

Python: Functions

1 #!/ usr / bin / env python3
2
3 def fib_print (n):
4 """ Print the Fibonacci up to at most n. """ # The __doc__ string
5 a, b = 0, 1
6 while a < n:
7 print (a, end=’, ’)
8 a, b = b, a + b
9 print ()

10
11 def fib_print_ext (n, start =0):
12 """ Print the Fibonacci series up to at most n, but at least start . """
13 a, b = 0, 1
14 while a < n:
15 if a >= start :
16 print (a, end=’, ’)
17 a, b = b, a + b
18 print ()
19
20 print ("Our fancy module ", __name__ , " loaded ")
21
22 if __name__ == " __main__ ": # If called from interpreter
23 fib_print (30)
24 fib_print_ext (30 , 4)

Listing 7: Functions

Stefan Huber: 01: Introduction Python 15 of 23

Python: Sets and dicts

A set has unique elements and adding, removing, ownership-testing is fast.
1 >>> bucket = {’hi ’, 0, 1, 2, 2, 2}
2 >>> len(bucket)
3 4
4 >>> 1 in bucket
5 True

Listing 8: set

A dictionary is a key-value map.
1 >>> codes = {5020: " Salzburg ", 6010: " Innsbruck ", 4010: "Linz"}
2 >>> len(codes)
3 3
4 >>> codes [5020]
5 ’Salzburg ’

Listing 9: dict

Stefan Huber: 01: Introduction Python 16 of 23

Python: Exceptions

1 #!/ usr / bin / env python3
2
3 if __name__ == " __main__ ":
4 try:
5 x = int(input (" Enter whole number : "))
6 print (" Entered ", x)
7 except ValueError :
8 print ("No whole number given ")
9

10 def whiney (): # A function can be defined in any scope
11 raise Exception ("A whiney function ")
12
13 try:
14 whiney ()
15 except Exception as err:
16 print (err)
17
18 try:
19 f = open(" doesnotexist .txt", "r")
20 except OSError as err:
21 print (" Error opening file:", err)
22 except :
23 print ("Some unknown error ")
24 else:
25 print (" Close again ")
26 f. close ()

Listing 10: Exceptions

Stefan Huber: 01: Introduction Python 17 of 23

Python: Classes

1 #!/ usr / bin / env python3
2
3 class Vector :
4 def __init__ (self , x, y): # Constructor
5 self.x, self.y = x, y
6
7 def printit (self): # All methods are functions with self as 1st arg
8 print ("({} , {})". format (self.x, self.y)) # String formatting
9

10 def add(self , v): # We do not care about type (v)...
11 self.x += v.x # ... only that it has members x and y
12 self.y += v.y # It is called Duck Typing
13
14 class Object :
15 pass
16
17 if __name__ == " __main__ ":
18 v = Vector (1.0 , 2.0)
19 v.add(Vector (5.0 , 6.0))
20 v. printit ()
21
22 u = Object () # u has no members
23 u.x, u.y = 10.0 , 20.0 # Now we dynamically add members x and y
24 v.add(Vector (5.0 , 6.0))
25 v. printit ()

Listing 11: Classes

Stefan Huber: 01: Introduction Python 18 of 23

Python: Class inheritance

1 #!/ usr / bin / env python3
2
3 class A:
4 def __init__ (self , x, y):
5 self.x, self.y = x, y
6
7 def f(self):
8 print ("(%g, %g)" % (self.x, self.y)) # String formatting
9

10 class B(A): # Inheritance
11 def __init__ (self , x, y, z):
12 A. __init__ (self , x, y) # Calling base class constructor
13 self.z = z
14
15 def f(self): # Polymorphism
16 print ("(%g, %g, %g)" % (self.x, self.y, self.z))
17
18 if __name__ == " __main__ ":
19 b = B(1, 2, 3)
20 b.f()

Listing 12: Inheritance

Stefan Huber: 01: Introduction Python 19 of 23

Python: Beyond Hello World

1 #!/ usr / bin / env python3
2
3 # A function
4 def print_square (n):
5 print ("{} squared is {}". format (n, n **2))
6 if n % 2 == 0:
7 print (" even", n)
8
9 # Will also be called when this module is imported somewhere

10 print (" module loaded ")
11
12 # The module name is " __main__ " if called by the interpreter rather than
13 # being imported
14 if __name__ == " __main__ ":
15 # Loop over the list [0, 1, 2, 3, 4]
16 for i in range (5):
17 print_square (i)
18
19 li = []
20 i = 0
21 while i < 5:
22 li. append (i*i)
23 i += 1
24
25 # List comprehension : Functional programming rocks !
26 assert (li == [x*x for x in range (5)])

Listing 13: morehelloworld.py

Stefan Huber: 01: Introduction Python 20 of 23

Python: Further beyond Hello World

1 #!/ usr / bin / env python3
2
3 # A class
4 class PowerPrinter :
5 # A constructor
6 def __init__ (self , exp =2):
7 self.exp = exp
8
9 # A method

10 def print (self , n):
11 fmt = "{} to the power of {} is {}"
12 print (fmt. format (n, self.exp , n** self.exp))
13
14 if __name__ == " __main__ ":
15 # Loop over a tuple with two elements
16 for p in PowerPrinter (), PowerPrinter (3):
17 # Loop over the list of whole numbers [0..5)
18 for i in range (5):
19 p. print (i)

Listing 14: moremorehelloworld.py

Stefan Huber: 01: Introduction Python 21 of 23

Section 4

Exercise formalities

Stefan Huber: 01: Introduction Exercise formalities 22 of 23

How to submit

Hard facts:
I Exercise sheets on the course wiki page.
I Deadline given on the sheet.
I Exercises submitted via git repo on gitlab.mediacube.at.
I Please respect the dictionary name formatting.

Soft facts:
I Use static code analyzers, like flake8 or pylint, to improve your results and avoid

trivial mistakes.
I A sample git repository is on gitlab.mediacube.at to ease the getting started

phase.

Stefan Huber: 01: Introduction Exercise formalities 22 of 23

gitlab.mediacube.at
gitlab.mediacube.at

On exercise sheet 01

I Work load primarily on getting familiar with Python at home.
I Therefore, only two small warm-up exercises.

Stefan Huber: 01: Introduction Exercise formalities 23 of 23

	Course formalities
	Introduction to Distributed Systems
	Python
	Exercise formalities

